Toxicogenomic studies reveal the trans-sulfuration pathway as a possible mechanism for liver toxicity

Minjun Chen
Laura Schnackenberg, Lei Guo, Ricky Holland, Richard Beger, Sastry Isukapalli, Panos G. Georgopoulos, William Welsh and Weida Tong

1 Environmental Bioinformatics & Computational Toxicology Center (ebCTC), UMDNJ-RWJMS
2 Division of Systemic toxicology, FDA’s NCTR

Email: minjun.chen@fda.hhs.gov
Outline

1. Introduction: Drug-induced liver injury focusing on glutathione depletion
2. A metabonomic study with 10 hepatotoxicants
3. A meta-analysis of microarray data for 7 hepatotoxicants
4. Discussion: Identification of potential biomarkers for hepatotoxicity
Drug-induced Liver Injury is Threatening American Health

Drug-induced liver injury is now the leading cause of acute liver failure (ALF) in USA, exceeding all other causes combined.
Drug-induced Liver Injury Hinders Drug Development

1. The **most frequent single cause** of safety-related drug withdrawn from market for the past 50 years

2. **Limits the use of many drugs**, including aceminophen, labetalol, trovafloxacin, and felbamate

Broaden the understanding of drug-induced liver injury has been identified as an opportunity in the FDA Critical Path Initiative
Glutathione is an important factor in phase II drug metabolism, and plays a key role in the liver detoxification. Glutathione depletion is often observed in drug-induced liver injury. Can we identify biomarkers/pathways of the hepatotoxicity related to glutathione depletion?
NMR-Metabonomic Study Design

- NMR data of rat urine were collected at 24, 48, 72, 96, 120, 144 and 168hr post-dose, with 7~10 biological replicates
 - 7 compounds plus control in training set
 Acetaminophen; 1,1-Dichloroethylene; Indomethacin; Microcystin-LR; Rotenone; Phenyl diisothiocyanate; Phenyl isothiocyanate
 - 3 compounds plus control in test set
 Allyl alcohol; Thioacetamide; Galactosamine

* All the compounds were reported to cause hepatotoxicity and glutathione depletion.
Principal Components Plot of Time-course Trajectory

- Maximal toxicity at 24 & 48 hr
- 48 hr post-dose data used to build model

Sun, J. Chrom B, in press
Modeling Work Flow

Table 1. Summary of modeling results

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Specificity</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set</td>
<td>86.3%</td>
<td>98.6%</td>
<td>75.4%</td>
</tr>
<tr>
<td>Test set</td>
<td>80.0%</td>
<td>100.0%</td>
<td>71.4%</td>
</tr>
</tbody>
</table>
Hepatotoxic Markers Identified in Metabonomic Study

Is the decreased level of N-Methylnicotinate (the product of SAM methylation) caused by the decreasing SAM?

<table>
<thead>
<tr>
<th>Integral bins</th>
<th>Metabolite</th>
<th>P-value</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9.0870 .. 9.1391]</td>
<td>N-Methylnicotinate</td>
<td>1.01E-11</td>
<td>-2.00</td>
</tr>
<tr>
<td>[8.8132 .. 8.8685]</td>
<td>N-Methylnicotinate</td>
<td>3.13E-11</td>
<td>-1.86</td>
</tr>
<tr>
<td>[6.5543 .. 6.6139]</td>
<td>trans-aconitate</td>
<td>8.48E-10</td>
<td>-1.93</td>
</tr>
<tr>
<td>[7.6038 .. 7.6635]</td>
<td>Hippurate</td>
<td>1.95E-10</td>
<td>-1.64</td>
</tr>
<tr>
<td>[6.6367 .. 6.6672]</td>
<td>Unidentified</td>
<td>7.67E-05</td>
<td>-1.31</td>
</tr>
<tr>
<td>[2.3996 .. 2.4243]</td>
<td>Succinate</td>
<td>1.14E-07</td>
<td>-1.37</td>
</tr>
<tr>
<td>[7.8568 .. 7.8942]</td>
<td>Unidentified</td>
<td>1.07E-07</td>
<td>1.49</td>
</tr>
<tr>
<td>[7.9913 .. 8.0417]</td>
<td>Unidentified</td>
<td>1.16E-07</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Abbreviation:
- SAM, S-adenosylmethionine
- SAH, S-adenosylhomomethionine

Diagram:
- Methionine is converted to N-Methylnicotinate, which is increased.
- Homocysteine and Glutathione are decreased, indicating altered metabolism.
- SAM and SAH are shown with their possible roles in methylation processes.
SAM Decreases When Treated with Acetaminophen

SAM level in rat urine decreases at 24 and 48 hr post-dose, which suggests that the transsulfuration pathway from methionine to gutathione is altered.

Sun, J. Chrom B, in press
Comparison of N-methylnicotinate with ALT, AST Biomarker’s Potential using ROC Curve

AUC of N-methylnicotinate (0.86) is larger than ALT (0.74) and AST (0.64) suggesting N-methylnicotinate as a potential biomarker candidate for hepatotoxicity.
Meta-analysis of Microarray Data from 3 Independent Studies

7 compounds

- GSE 2303: Valproic acid, DEHP
- GSE 2187: Indomethacin, DEC
- GSE 5509: ANIT, DMN, NMF

Abbreviation
- DMN: dimethylnitrosamine
- NMF: N-methylformamide
- ANIT: alpha-Naphthylisothiocyanate
- DHEP: diethylhexylphthalate
- DEC: 1,1-Dichloroethylene.

- All were reported to cause hepatotoxicity and glutathione depletion
- Data were obtained from GEO (http://www.ncbi.nlm.nih.gov/geo/)
Time-course trajectory of principal components analysis using ebTrack/ArrayTrack

- Maximal effect at 24 & 48 hr
- 24 or 48 hr post-dose data used for meta-analysis

Microarray data of Valproic acid
Work Flow of Meta-analysis using ebTrack/ArrayTrack

- Meta-profiling
 - compound
 - gene

- Identify most enriched genes in meta-profiles
 - **gene** | **count**
 - Npm1: 7
 - Dpys: 6
 -: 6

- Chance assessment of the enriched genes using permutation analysis
- Define ‘meta-signatures’ if gene significantly enriched (FDR<threshold)
- Functional analysis of ‘meta-signatures’

- GO
- KEGG
- PubMed

(FDR: False discovery rate)
Identified Meta-signatures Related to Hepatotoxicity with Glutathione Depletion
Gene Ontology Analysis Reveals Altered Trans-sulfuration Pathway using ebTrack/ArrayTrack

Some biological processes involved in trans-sulfuration pathway

<table>
<thead>
<tr>
<th>GeneName</th>
<th>locusId</th>
<th>VPA</th>
<th>NMF</th>
<th>IND</th>
<th>DMN</th>
<th>DEHP</th>
<th>DEC</th>
<th>ANIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-cysteine catabolic process to taurine (GO:001945, P=0.000003, level=10.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cdo1</td>
<td>81718</td>
<td>-1.60</td>
<td>-1.62</td>
<td>Non-sig</td>
<td>-1.85</td>
<td>-2.49</td>
<td>-2.82</td>
<td>-2.21</td>
</tr>
<tr>
<td>Csad</td>
<td>60356</td>
<td>-1.78</td>
<td>-5.92</td>
<td>-2.87</td>
<td>-2.27</td>
<td>-2.20</td>
<td>-2.01</td>
<td>-2.62</td>
</tr>
<tr>
<td>S-Adenosylmethionine metabolic process (GO:0046500, P=0.00190, level=5.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnmt</td>
<td>25134</td>
<td>-1.36</td>
<td>-2.13</td>
<td>-2.63</td>
<td>-1.78</td>
<td>-1.39</td>
<td>-4.90</td>
<td>-3.08</td>
</tr>
<tr>
<td>Gamt</td>
<td>25257</td>
<td>-2.52</td>
<td>-1.39</td>
<td>-2.16</td>
<td>Non-sig</td>
<td>-1.68</td>
<td>-2.31</td>
<td>-1.81</td>
</tr>
<tr>
<td>ATP catabolic process (GO:0006200, P=0.000159, level=9.76)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abcc6</td>
<td>81642</td>
<td>-1.70</td>
<td>-2.09</td>
<td>-2.90</td>
<td>-1.70</td>
<td>-1.35</td>
<td>-1.92</td>
<td>-1.59</td>
</tr>
<tr>
<td>Acly</td>
<td>24159</td>
<td>-5.21</td>
<td>-3.06</td>
<td>-3.52</td>
<td>-2.60</td>
<td>-2.63</td>
<td>-2.53</td>
<td>Non-sig</td>
</tr>
</tbody>
</table>
Metabonomic and Genomic Studies Reveal Trans-sulfuration Pathway Altered
Summary

1. Both metabonomic and genomic studies reveal disturbance in the trans-sulfuration pathway

2. Urinary level of N-methylnicotinate could be a non-invasive potential biomarker of hepatotoxicity related to glutathione depletion

3. Systematic integrated studies (e.g. metabonomic and genomic) can help to understand complex toxicity mechanisms
 • Systems such as the ebTrack/ArrayTrack can facilitate such integrated analysis
Acknowledgments

USEPA Financial support
Dr. William Welsh
Dr. Panos G. Georgopoulos
Dr. Weida Tong

FDA’s NCTR
Hong Fang
Qiang Shi
Huixiao Hong
Perking Roger

Leming Shi
Tao Chen
Jinchun Sun

Comet consortium
(Metabonomic Data)
John Wijsman, Mary Bollard, Olaf Beckonert, Hector Keun, Henri Antti, Timothy Ebbels, Elaine Holmes, Don Robertson, Michael Reilyl, John Lindon, Jeremy Nicholson

disclaimer
Support for this work has been partially provided by the USEPA-funded Environmental Bioinformatics and Computational Toxicology Center (ebCTC), under STAR Grant number GAD R 832721-010. This work has not been reviewed by and does not represent the opinions of the funding agency.