Summary

Context:
- Population-based exposure assessment is computationally demanding
- Several steps involved
- Large number of sampled population required to obtain statistically representative results
- Requires weeks to obtain ambient calculations, to months (including ambient air quality calculations) on a single machine

Need:
- Techniques to improve computational efficiency, without compromising the accuracy of the results
- A system that can facilitate quick sensitivity testing of the exposure assessment process

Motivation for Pre-Computed Modeling

Reduction of Computational Time using Pre-Computed Modeling Blocks

Goals:
- Results must be identical to the original model
- Pre-Computed model must be synchronized with the original model
- Should be amenable to iterative refinement

Overview of the Pre-Computed Modeling Architecture

Rationale for Population-Based Exposure Assessment

Exposures and doses for one person
- Physiological characteristics (age, gender, body weight, etc.)
- Microenvironmental factors (ventilation rate, house size, etc.)
- Activity patterns (exercise, sleep, commuting, etc.)
- Location of microenvironment (school, home, car, etc.)
- Local ambient concentrations

Exposures and doses for population
- Physiological characteristics (age, gender, body weight, etc.)
- Microenvironmental factors (ventilation rate, house size, etc.)
- Activity patterns (exercise, sleep, commuting, etc.)

Relevant Databases
- Census Database from US Census Bureau
- US Housing Survey
- Databases of representative activity patterns (e.g. the Consolidated Human Activity Database, CHAD, McCurdy 2000)
- Emergency response strategies
 (e.g. evacuation/shelter-in-place)

Computational Requirements for Exposure Assessment

The estimates of computer requirements shown above are based on MENTOR/SHEDS-1A simulation for the urban Philadelphia/Camden region shown here. Background concentrations were obtained from the CMAQ (Community Multiscale Air Quality) model run with the toxics version of SAPRC99 chemical mechanism - results from the 4 km x 4 km were used.

Mathematical Formulation

"Microenvironmental factors" based calculations

\[\text{Activity} = \text{Activity Pattern} \times \text{Population} \]

\[\text{Microenvironment} = \text{Microenvironment Pattern} \times \text{Population} \]

\[\text{Concentration} = \text{Background Concentration} \times \text{Local Ambient Concentration} \]

\[\text{Simulation} = \text{Microenvironment} \times \text{Activity} \]

\[\text{Exposure} = \text{Simulation} \times \text{Dosimetry} \]

Discussion

- Conceptual development of the pre-computed modeling framework completed
- A prototype of the system used in conjunction with MENTOR/SHEDS-1A
- System reproduced identical results as full model simulation
- Execution time reduced from several days to under an hour
- Storage space for the pre-computed factors is about two orders of magnitude as the full model
- A scientist can quickly download the factors and perform preliminary analyses
 - without having to understand all the complexities in the models
 - without having to download large datasets
 - Provides a means for fast assessment of exposures and risks
 - Potential use for rapid sensitivity analyses
 - However, the full model has to be run "at least once"
 - Applicable only for the given "scenario" (e.g. set of census tracts)

Acknowledgements

Base Funding for the Ozonolysis Research Center is Provided by the State of New Jersey Department of Environmental Protection. The work presented here has been funded by a University Partnership Agreement (UPA) between the USEPA and EOS (Cooperative Agreement #R831635).