REGIONAL MODELING OF ATMOSPHERIC AEROSOLS FOR EXPOSURE ANALYSIS: AN APPLICATION TO THE EASTERN U. S.

*Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
**Department of Mechanical Engineering, University of Delaware, Newark, DE, USA

Introduction. This work evaluates the viability of regional aerosol models for performing analysis of potential population exposure to PM, through case studies focusing on model sensitivity and through assessment of relevant model input databases. The objective of this work is to produce, test, and evaluate components for the Modeling ENvironment for TOtal Risk Studies (MENTOR) currently being developed at EOHSI, extending the framework of EDMAS1. These components will offer various alternatives for calculating and evaluating estimates of spatiotemporal fields of ambient airborne pollutants, including fine particulate matter2.

Methodology. The present study couples together various relevant models within the MENTOR framework. Aerosol dynamics are described by the University of Delaware model (UDAERO)3. This is a size- and composition-resolved sectional aerosol model that explicitly simulates the transport of volatile species between gas and aerosol particles. The model solves the following equation:

\[
\frac{\partial n_m(D_p,x,t)}{\partial t} = H_i(D_p,x,t) n_m(D_p,x,t) - \frac{1}{3} \frac{\partial H n_m(D_p,x,t)}{\partial D_p},
\]

where \(D_p^* = \log(D_p/D_p^0)\) is the log diameter; \(n_m(D_p^*,x,t)dD_p^*\) is the mass concentration of species \(i\) between log diameters \(D_p^*\) and \(D_p^* + dD_p^*\) and \(n_m = \sum_{i=1}^{s} n_{mi}\); \(H_i = (1/m)(dm_i/dt)\) is the normalized condensation rate of species \(i\) and \(H = \sum_{i=1}^{s} H_i\); \(m_i\) is the mass of species \(i\) in an individual particle of total mass \(m = \sum_{i=1}^{s} m_i\).

The UDAERO model is incorporated into the North Carolina Supercomputer Center’s (NCSCC) Multiscale Air Quality Simulation Platform (MAQSIP) to form a regional particulate model (MAQSIP-UDAERO). In the vertical direction, the model domain encompasses nearly the entire troposphere, and so the clouds play a significant role in mixing vertically the aerosol particles and contributing to the change in aerosol mass and composition through aqueous reactions. To account for these cloud effects the Regional Acid Deposition Model (RADM) cloud scheme and the MAQSIP resolved cloud scheme are used to treat deep and shallow cumulus clouds and non-convective clouds respectively. The cloud modules are modified so that they can interface with the sectional aerosol model.

In order to address potential population exposure issues, the MAQSIP-UDAERO predictions for ambient PM have to be incorporated with population information. This is done by using a GIS (Geographic Information System) based set of exposure assessment tools that have been developed to estimate potential outdoor population exposures4. These tools are components of MENTOR and can also be used in conjunction with other modules to estimate individual exposures within different microenvironments.

Case Studies. In the case studies MAQSIP-UDAERO was applied to predict the ambient PM concentration over the eastern United States during the July 9-13, 1995 episode. Figure 1 shows the predicted total PM10 and PM2.5 spatial distributions at 8:00am, July 13, 1995. In order to
utilize the GIS based exposure assessment tool, a virtual geo-referenced grid is created through
the GIS system over the same eastern U.S. domain, with a resolution compatible with the grid of
MAQSIP-UDAERO. County population data taken from the U.S. Census are then resolved at
grid cell level. Then the potential outdoor exposure, defined as $E_{p,o} = (\text{PM Concentration} \times
\text{Population})$ per grid cell, is obtained and maps of population, PM concentrations and exposure
patterns are created to graphically represent the exposure scenario.

![Figure 1](image)

Figure 1: Predicted ambient PM$_{10}$ (left panel) and PM$_{2.5}$ (right panel) concentrations at
8am EDT, July 13, 1995.

The available data for primary PM emissions contains only two species, PM$_{2.5}$ and PM$_{10}$, plus
primary sulfate emissions. In order for these data to be used as inputs to the model, they have to
be first broken down into different species, then split into size sections according to an assumed
size distribution, since MAQSIP-UDAERO requires size- and composition-resolved PM
emission data. The breakdown into species is done empirically, while the split into size sections
is accomplished by assuming a log-normal size distribution profile. To evaluate the effect of the
assumed size profiles on the final predicted PM concentrations, different parameters for the log-
normal profile are tested as part of sensitivity studies.

Another component of the sensitivity analysis aims to evaluate the impact of different control
strategies on the ambient PM concentrations and the corresponding potential population
exposure to PM. In the past, policy studies have considered reduction of SO$_2$ emissions as the
main approach to reduce ambient PM$_{2.5}$ mass. However, recent studies have shown that
reductions in PM sulfate concentration may cause inorganic PM$_{2.5}$ mass to respond nonlinearly,
as a result of more nitric acid gas condensing to the aerosol phase. This study examines the effect
of reduced sulfur emissions on the predicted aerosol nitrate concentration and the final impact on
the total ambient PM and potential population exposure to PM. The effect of reducing the
primary PM emissions is also examined.

Acknowledgments. The support of the USEPA funded Center for Exposure and Risk Modeling (CERM) and
Northeast Ozone and Particle Study (NEOPS), and of the NJDEP funded Ozone Research Center (ORC) at EOHSI,
is gratefully acknowledged.

References.